
Pipeline & Depot: Dance Through the EVM in 1 Transaction

Publius Silo Chad
beanstalk.publius@protonmail.com silochad@protonmail.com

evmpipeline.org

Published: November 16, 2022

Modified: November 17, 2023
Whitepaper Version: 1.0.4

Code Version: 1.0.11

“Leave nothing for to-morrow which can be done to-day.”

- The Collected Works of Abraham Lincoln edited by Roy P. Basler, Volume II, “Notes for a
Law Lecture” (July 1, 1850?), p. 812

Abstract

Using the Ethereum Virtual Machine3 (EVM) through an Externally-owned account4

(EOA) is often a painful and time-intensive process. While the censorship resistant and
permissionless applications that run on censorship resistant and permissionless computer
networks have the potential to dramatically alter the fabric of society, they are less likely
to do so if the user experiences they create are worse than centralized competitors. To
date, using more than one protocol in the EVM from an EOA frequently requires multiple
transactions. A generalized framework to permissionlessly use arbitrary protocols within
the EVM, from an EOA, in a single transaction will improve user experiences with
decentralized applications. We propose an Ethereum5-native pair of contracts that enable
this framework for Ether, ERC-206, ERC-7217 and ERC-11558 Standard tokens and
Beanstalk9 Farm balances and Silo Deposits,10 and can be easily further generalized to
include other transferable asset types. A smart contract that can perform an arbitrary
series of actions in the EVM in a single transaction creates a sandbox for execution
that is loaded and called by a second contract with EIP-71211 permit support for asset
approvals. A new function call architecture enables dynamic callData.

1 github.com/BeanstalkFarms/Pipeline
2 quod.lib.umich.edu/l/lincoln/lincoln2/1:134?rgn=div1;view=fulltext
3 ethereum.org/en/developers/docs/evm
4 ethereum.org/en/developers/docs/accounts
5 ethereum.org
6 ethereum.org/en/developers/docs/standards/tokens/erc-20
7 ethereum.org/en/developers/docs/standards/tokens/erc-721
8 ethereum.org/en/developers/docs/standards/tokens/erc-1155
9 github.com/BeanstalkFarms/Beanstalk
10 Any italicized terms not defined herein are defined by Beanstalk.
11 eips.ethereum.org/EIPS/eip-712

mailto:beanstalk.publius@protonmail.com
mailto:silochad@protonmail.com
https://evmpipeline.org/
http://github.com/BeanstalkFarms/Pipeline
http://quod.lib.umich.edu/l/lincoln/lincoln2/1:134?rgn=div1;view=fulltext
http://ethereum.org/en/developers/docs/evm
http://ethereum.org/en/developers/docs/accounts
http://ethereum.org
http://ethereum.org/en/developers/docs/standards/tokens/erc-20
http://ethereum.org/en/developers/docs/standards/tokens/erc-721
http://ethereum.org/en/developers/docs/standards/tokens/erc-1155
http://github.com/BeanstalkFarms/Beanstalk
http://eips.ethereum.org/EIPS/eip-712


Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Using Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 PipeCalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Pipe Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Depot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Clipboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.1 Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2 Ether Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.3 pasteParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8.2 Whitepaper Version History . . . . . . . . . . . . . . . . . . . . . . . 11



1 Introduction

The potential uses of the EVM are infinite. Its composable nature means that infinite functionality
need not be implemented by a single protocol. Instead, EVM users can pick and choose the best
protocol to use for each action. However, using more than one protocol in a single transaction
currently requires a smart contract with a custom function that aggregates the desired protocols
uses. Development of custom functions is often expensive and complex.

The need to perform multiple transactions to perform a single desired aggregate action within the
EVM creates a horrible user experience. The execution of actions that require multiple transactions
typically takes minutes of intermittent user attention and action. Before the execution of subsequent
transactions, the reason for attempting to perform the larger action within the EVM could be
invalidated by other changes in its state, rendering previous related transaction(s) wasted or worse.
There is an additional gas cost associated with each additional transaction used to perform the
same aggregate action. While the capabilities of the EVM are incredibly powerful, the likelihood
that users take advantage of them in practice is significantly limited by the need to affect single
actions in multiple transactions. The high development overhead associated with new functions to
implement each combination of other protocols makes creating a good user experience in the EVM
excessively difficult.

Pipeline is a standalone contract that creates a sandbox to execute an arbitrary composition of valid
actions within the EVM in a single transaction using Ether. Depot is a wrapper for Pipeline that
supports (1) loading Ether and non-Ether assets into Pipeline, (2) using them and (3) unloading
them from Pipeline, in a single transaction. Clipboard defines an Advanced Function Call (AFC)
architecture that allows subsequent function calls to use the returnData of previous ones in a
configurable fashion. The combination of Pipeline, Depot and Clipboard allows EVM users to
perform arbitrary valid actions, through arbitrarily many protocols, in a single transaction.

2 Previous Work

MakerDAO’s multicall12 function allows for arbitrarily many static calls to multiple protocols in
a single call.

Uniswap’s multicall13 function allows for arbitrarily many function calls to a single protocol in a
single transaction.

Beanstalk’s farm14 function allows for arbitrarily many function calls to multiple protocols in a
single transaction, but requires an upgrade to support each new function call to another protocol.

EIP-712 standardizes a permit system to approve the transfer of an amount of an asset as a signed
payload in the same transaction that transfers the asset.

12 github.com/makerdao/multicall
13 github.com/Uniswap/v3-periphery/blob/main/contracts/base/Multicall.sol
14 github.com/BeanstalkFarms/Beanstalk/blob/master/protocol/contracts/farm/facets/FarmFacet.sol

3

http://github.com/makerdao/multicall
http://github.com/Uniswap/v3-periphery/blob/main/contracts/base/Multicall.sol
http://github.com/BeanstalkFarms/Beanstalk/blob/master/protocol/contracts/farm/facets/FarmFacet.sol


3 Pipeline

Pipeline creates a sandbox to execute any series of function calls on any series of protocols through
Pipe functions. Any assets left in Pipeline between transactions can be transferred out by any
account. Users Pipe a series of PipeCalls that each executes a function call to another protocol
through Pipeline.

3.1 Using Pipeline

In order to safely use Pipeline, users must (1) load Pipeline with assets, (2) Pipe a series of PipeCalls
to arbitrary protocols and (3) unload all assets from Pipeline, in a single transaction.

1. Load Assets: Pipeline is loaded through any asset transfer function. Users should not load
Pipeline directly unless only loading Ether. Instead, when loading non-Ether assets, users
should prepend an asset transfer function to a Pipeline call through Depot.

2. PipeCalls: Pipeline Pipes a series of PipeCalls to specified protocols executing each PipeCall
in an isolated environment using the assets loaded in (1).

3. Unload Assets: Pipeline must be properly unloaded after each use to avoid loss of funds:
any leftover assets can be unloaded from Pipeline by any account to a destination of their
choosing. Pipeline can be properly unloaded by both (a) directing the outputs of PipeCalls
straight to desired destinations and (b) Piping asset transfer function calls to transfer assets
to desired destinations.

(1) can only be safely performed in the same transaction as (2) and (3) directly through Pipeline if
the only asset being loaded into it is Ether. In order to safely load non-Ether assets into Pipeline
users can call Pipeline through Depot.

Figure 1: Using Pipeline

4



3.2 PipeCalls

PipeCalls specify a function call to be executed by Pipeline. Pipeline supports 2 types of PipeCalls:
PipeCall and AdvancedPipeCall.

1. PipeCall: PipeCall makes a function call with a static target address and callData.

1 struct PipeCall {

2 address target;

3 bytes data;

4 }

2. AdvancedPipeCall: AdvancedPipeCall makes a function call with a static target address
and both static and dynamic callData.

1 struct AdvancedPipeCall {

2 address target;

3 bytes data;

4 bytes clipboard; // See Section 5

5 }

3.3 Pipe Functions

Pipeline’s Pipe functions execute one or more PipeCalls or AdvancedPipeCalls. Pipeline has 3 Pipe
functions: pipe, multiPipe and advancedPipe

1. pipe: pipe executes a single PipeCall.

1 function pipe(PipeCall calldata p)

2 external

3 payable

4 returns (bytes memory result);

2. multiPipe: multiPipe executes a list of PipeCalls.

1 function multiPipe(PipeCall [] calldata pipes)

2 external

3 payable

4 returns (bytes[] memory results);

3. advancedPipe: advancedPipe executes a list of AdvancedPipeCalls.

1 function advancedPipe(AdvancedPipeCall [] calldata pipes)

2 external

3 payable

4 returns (bytes[] memory results);

5



4 Depot

Depot wraps Pipeline’s Pipe functions to facilitate the loading of non-Ether assets in Pipeline in
the same transaction that loads Ether, Pipes calls to other protocols, and unloads Pipeline.

Depot has four functions that wrap Pipeline’s Pipe functions.

1. pipe: pipe wraps Pipeline’s pipe function but does not support sending Ether.

1 function pipe(PipeCall calldata p)

2 external

3 payable

4 returns (bytes memory result);

2. etherPipe: etherPipe wraps Pipeline’s pipe function and supports sending Ether.

1 function etherPipe(PipeCall calldata p, uint256 value)

2 external

3 payable

4 returns (bytes memory result);

3. multiPipe: multiPipe wraps Pipeline’s multiPipe function but does not support sending
Ether.

1 function multiPipe(PipeCall [] calldata pipes)

2 external

3 payable

4 returns (bytes[] memory results);

4. advancedPipe: advancedPipe wraps Pipeline’s advancedPipe function and supports sending
Ether.

1 function advancedPipe(AdvancedPipeCall [] calldata pipes , uint256 value)

2 external

3 payable

4 returns (bytes[] memory results);

5 Clipboard

Clipboard allows users to Copy return values stored as returnData from any AdvancedPipeCalls
that have already been executed and Paste them into the callData of the next AdvancedPipeCall,
in a customizable manner.

Each AdvancedPipeCall includes Clipboard to encode (1) how many paste operations to perform, (2)
which returnData from previous AdvancedPipeCalls to Copy (i.e., returnDataIndex), (3) where
to Copy from within (2) (i.e., copyIndex), and (4) where to Paste it in the callData of the next
AdvancedPipeCall (i.e., pasteIndex). Bytes are Pasted 32 bytes at a time.

Clipboard defines a Type, whether to use Ether and how much, and corresponding pasteParam(s),
if necessary, for each AdvancedPipeCall.

6



5.1 Type

The first byte of Clipboard defines its Type, which specifies the amount of Pasting operations in the
AdvancedPipeCall. The Type is either 0x00, 0x01 or 0x02.

• 0x00 - Basic function call: no bytes are Pasted (i.e., a static function call).

• 0x01 - 1 bytes32 Pasting operation: 1 bytes32 is Pasted from a previous Advanced-
PipeCall’s returnData. 1 pasteParams are the first 32 bytes of the Clipboard.

• 0x02 - n bytes32 Pasting operations: n bytes32 are Pasted from previous Advanced-
PipeCalls’ returnData. Bytes 3 through 31 are left empty. Bytes 32 through 32 * (n + 2) are
a bytes32[], where each bytes32 are the pasteParams for a given byte Paste operation.

5.2 Ether Usage

The second byte of Clipboard defines the Use Ether Flag, which specifies whether to include Ether
in the AdvancedPipeCall. The Use Ether Flag is either 0x00 or 0x01.

• 0x00 - Do not send Ether in the AdvancedPipeCall.

• 0x01 - Send Ether in the AdvancedPipeCall. The amount of Ether to send is added as a
uint256 at the end of Clipboard.

5.3 pasteParams

Clipboard Types 0x01 and 0x02 accept one or more pasteParams, respectively, as inputs that encode
where to Copy from, what to Copy, and where to Paste to, 32 bytes per pasteParams.

• Empty - bytes 0 - 1 are reserved for the Type and Use Ether Flag.

• returnDataIndex - bytes 2 - 11 specify the index of the returnData to Copy in the list
of returnData from previously executed AdvancedPipeCalls in the current advancedPipe

function call, ordered by execution (e.g., 0x0000000000 Copies the returnData of the 0th
AdvancedPipeCall, 0x0000000001 Copies the returnData of the 1st, etc.).

• copyIndex - bytes 12 - 21 specify the byte index in the corresponding returnData[returnDataIndex]
to Copy. The first 32 bytes are the length of the return value (e.g., 0x0000000020 Copies the
0th return value from returnData[returnDataIndex], 0x0000000040 Copies the 1st return
value, etc.).

• pasteIndex - bytes 22 - 31 specify the byte index of where to Paste onto the callData of
the next AdvancedPipeCall (e.g., 0x0000000024 Pastes onto the 0th parameter of the next
AdvancedPipeCall’s callData, 0x0000000044 Pastes onto the 1st parameter, etc.).

7



Figure 2: Clipboard

8



6 Risk

There are numerous risks associated with Pipeline and Depot. This is not an exhaustive list.

The Pipeline, Depot and Clipboard code bases are novel. None have been tested in the “real world”
prior to their initial deployment. The open source nature of Pipeline and Depot means that others
can take advantage of any bugs, flaws or deficiencies in them.

The majority of known risks associated with Pipeline are from misuse:

• Failure to unload assets from Pipeline in the same transaction that loads it will highly likely
result in a loss of those assets;

• Approving Pipeline to use any assets will highly likely result in a loss of those assets; and

• Improper encoding of Clipboard can result in a loss of funds or value. The complexity of
properly encoding and decoding Clipboard makes verifying correctness difficult.

7 Future Work

Pipeline, Depot and Clipboard are a work in progress. While Pipeline andDepot are non-upgradable,
they can be easily forked and improved. The following are potential improvements that can be in-
corporated into them:

• Depot easily can be further generalized to include other transferable asset types.

• Currently Clipboard only supports Copying 32 bytes at a time. Additional Clipboard Types

can be added to allow the entry of an additional copyLength parameter.

• Tooling can be improved to make the encoding and decoding of Clipboard easier and more
accessible.

• The ability to execute PipeCalls on various “layers” of the Ethereum network in a single
transaction can be implemented.

9



8 Appendix

8.1 Glossary

The following terms are used throughout this Whitepaper:

AdvancedPipeCall - A type of Pipecall that makes a function call with a static taget address
and both static and dynamic callData;

Clipboard - A framework to Copy return values stored as returnData from any Advanced-
PipeCalls that have already been executed and Paste them into the callData of the next Ad-
vancedPipeCall, in a customizable manner;

Copy - Add bytes32 pasteParams to the Clipboard;

Deposit - Assets in the Silo;

Depot - A wrapper for Pipeline that supports (1) loading Ether and non-Ether assets into
Pipeline, (2) using them and (3) unloading them from Pipeline, in a single transaction;

Farm - Where Beanstalk Farm balances are stored;

Paste - Add bytes32 pasteParams from the Clipboard to callData of the next Advanced-
PipeCall to be executed;

Pipe - Pipeline’s functions that execute one or more PipeCalls or AdvancedPipeCalls;

PipeCall - A struct that specifies a function call to be executed by Pipeline.

Pipeline - A standalone contract that creates a sandbox to execute an arbitrary composition of
valid actions within the EVM in a single transaction using Ether; and

Silo - The Beanstalk DAO.

10



8.2 Whitepaper Version History

The following is a complete version history of this whitepaper. Unless otherwise noted, references
within this Whitepaper Version History are not updated to reflect later changes.

• 1.0.0 (November 16, 2022)

– Original Whitepaper.

• 1.0.1 (November 26, 2022)

– Corrected the link to the Pipeline GitHub Repository.

– Corrected a typo in the second paragraph of Section 5.

– Corrected the numbering in the second paragraph of Section 5.

– Moved the Glossary to Section 8.1 under Appendix.

– Changed paper to Whitepaper in the intro to the Glossary.

• 1.0.2 (May 25, 2023)

– Corrected a typo in the AdvancedPipeCall area of Section 3.2.

• 1.0.3 (August 24, 2023)

– Updated Silo Chad’s email address.

• 1.0.4 (November 17, 2023)

– Corrected typos in Sections 3.2 and 5.2.

– Removed the second paragraph of Section 5.2.

– Corrected a typo in the second paragraph of Section 6.

– Changed Whitepaper to whitepaper in the intro to the Glossary.

11

https://github.com/BeanstalkFarms/Pipeline-Whitepaper/blob/master/version-history/pipeline1_0_0.pdf
https://github.com/BeanstalkFarms/Pipeline-Whitepaper/blob/master/version-history/pipeline1_0_1.pdf
https://github.com/BeanstalkFarms/Pipeline
https://github.com/BeanstalkFarms/Pipeline-Whitepaper/blob/master/version-history/pipeline1_0_2.pdf
https://github.com/BeanstalkFarms/Pipeline-Whitepaper/blob/master/version-history/pipeline1_0_3.pdf
https://github.com/BeanstalkFarms/Pipeline-Whitepaper/blob/master/version-history/pipeline1_0_4.pdf

	Introduction
	Previous Work
	Pipeline
	Using Pipeline
	PipeCalls
	Pipe Functions

	Depot
	Clipboard
	Type
	Ether Usage
	pasteParams

	Risk
	Future Work
	Appendix
	Glossary
	Whitepaper Version History


